
0022±460X/99/450979 � 08 $30.00/0 # 1999 Academic Press

POLYGONALIZATION OF WHEEL TREADS
CAUSED BY STATIC AND DYNAMIC
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High speed wheelsets of railway systems di�er from classical ones. There
dynamics are determined by gyroscopic and inertia moments. A dynamical
model with 40-DOF was generated using elastic beam elements to describe the
axle, connected to rigid wheel and brake disks. Imbalance calculations and
wear simulations were carried out resulting in polygonalization of the circular
wheel surface. Even when starting the simulation with wheels of constant
radius, the unroundness grows to unacceptable values.
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1. INTRODUCTION

The dynamic behaviour of wheelsets of modern high speed trains differs from
that of ``classical'' wheelsets for two reasons.
First, due to increased kinetic energy of the high speed trains more braking

power is necessary. Therefore, these wheelsets are equipped with more braking
disks than usual, typically with four instead of two disks.
Second, as the diameter of the high speed wheelsets is similar to that of lower

speed wheels of the same railway company, the rotational speed of the former
wheelsets is substantially higher than usual.
By calculation it has been proven that the effects of rotary inertia and

gyroscopic moments dominate vibrations of the high speed wheelsets, in contrary
to the standard wheelsets. In other words, the high speed wheelsets vibrations
are a matter of rotor dynamics and are governed by gravitational, gyroscopic
and inertia forces [1, p.233], [2, p.272].
The differential equation of these wheelsets (see Figure 1), modelled as an

elastic multi-body system (see Figure 2), are generated by application of the
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impulse and angular momentum laws [3] and is deduced in reference [1, p. 238ff]
(including imbalances): It is

�MS�MR��x� �D�G� _x� �CS�N�x � F�O, t�: �1�
Here MS is the modal mass matrix of the shaft elements, MR is the mass matrix
of the rotor/disc elements, D is the damping matrix= aMS+ bCS, G is the
gyroscopic matrix, CS is the modal spring matrix of the shaft elements and the
suspensions, N is the matrix of non-conservative effects, F is the excitation
vector due to imbalance and track irregularities, O is the rotational frequency of
the wheelset and x is the state vector. The static imbalance ai is

ai �
ai1
ai2
0

0@ 1A,

and the inertial tensor Jikl is (including dynamic imbalance)

Jikl �
Ai ÿFi ÿEi

ÿFi Bi ÿDi

ÿEi ÿDi Ci

0@ 1A:

2. DYNAMICS AT ROTATIONAL SPEED O, IMBALANCE RESPONSE

The manufactured wheelsets contain small inaccuracies, static and dynamic
imbalances. The imbalance response, e.g., the passing of critical speeds, has to be
considered. A cyclic response might be generally assumed. But in reality the
vertical stiffness of the track is not necessarily equal to the longitudinal primary
suspension of the wheelset. If one understands the wheelset as a spring±
supported rotor, one has to use therefore an ansatz function, which is assumed
with different amplitudes in the vertical and longitudinal directions:

xi�t� � xic cosOt� xis sinOt: �2�

Figure 1. High speed wheelset.
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Upon using equation (2) equation (1) becomes

ÿO2M
ges
xic � OD

ges
xis � C

ges
xic � FC, ÿ O2M

ges
xis ÿ OD

ges
xic � C

ges
xis � FS,

�3�

or, written as a matrix,

C
ges
ÿ O2M

ges
OD

ges

ÿOD
ges

C
ges
ÿ O2M

ges

0@ 1A q
C

q
S

 !
� FC

FS

� �
, �4�

in which qC represents the longitudinal component and qS the vertical
component of the stationary (elliptic) motion of the nodes.
Equation (4) produces an algebraic system of equations

UQ � Fu,

which can be solved by LU decomposition [4].
The FORTRAN 77 - code UNWUCHT has been used to compute the results

shown in Figures 3 and 4, using input - data very similar to that of reference [5].
At low speeds the rotating wheelset vibrates in longitudinal direction, passing the
critical speed of the primary suspension at about 10 Hz. Clearly visible is the
anisotropic behaviour, because the amplitudes are different in longitudinal
respectively vertical direction. The elliptic movement starts at about 100 km/h
and is at the (unrealistic high) speed of approximately 900 km/h dominated by
vertical components at 95 Hz.
For better illustration of the whole wheelset dynamics, of the two Figures 3

and 4, one is with solely static imbalance distribution at the disks of the wheelset
[1, see Figure 9], and the other is with pure dynamic imbalances distributed at
the four brake disks and at the two wheel disks: In the static imbalance case the
wheels are ``calm'' compared with the brake disks. In the other case (dynamic
imbalance) the wheels are ``violent'' in the comparison with the brakes.

0i =

0k = 1 2 3 4 5 6 Shaft sections

1 2 3 4 5 6 7 Nodes

Figure 2. Dynamical model of the wheelset.
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3. WEAR AT THE SURFACES OF HIGH SPEED WHEELSETS, CAUSED BY
IMBALANCE

The imbalance causes wear due to the short term dynamic behaviour, which
creates creepage and polygonalization of the wheel surface in the ``long term''
behaviour. The mechanism of ``self-excitation'' is described in Figure 5 [1, see
Figure 3).
By analyzing equation (1) a coupling between bending and torsional (e)

vibration can be discovered (longitudinal xi, rotation around xi, Fi; vertical zi,
rotation around zi, Y):

symmetrical at the mass matrix with

zi, mia
i
1 cos�Ot� ÿmia

i
2 sin�Ot�, Fi, ÿ Ei cos�Ot� �Di sin�Ot�,

xi, ÿmia
i
2 sin�Ot� ÿmia

i
2 cos�Ot�, Yi, ÿ Ei sin�Ot� ÿDi cos�Ot�;

unsymmetrical at the gyroscopic matrix with

zi, 2mi O�ai1 sin�Ot� ÿmi a
i
2 cos�Ot��, Fi, 2O�Ei sin�Ot� �Di cos�Ot��,
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Figure 3. Stationary solution of an imbalanced±excited wheelset vibration (static imbalance at
each wheel and brake disk).
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Figure 4. Stationary solution of an imbalanced±excited wheelset vibration (dynamic imbalance
at each wheel and brake disc).
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xi, 2mi O�ÿai1 cos�Ot� �mi a
i
2 sin�Ot��, Yi, 2O�ÿEi cos�Ot� �Di sin�Ot��;

antisymmetric at the spring matrix with

zi, ÿmiO2�ÿai1 cos�Ot� � ai2 sin�Ot��, Fi, O2�Ei cos�Ot� ÿDi sin�Ot��,

xi, miO2�ai1 sin�Ot� � ai2 cos�Ot��, Yi, O2�Ei sin�Ot� �Di cos�Ot��:
The bending/torsion±coupling occurs, as it is presented, in the presence of static
as well as of dynamic imbalance.
By writing the state vector w as

w � �xi= _xi�, �5�
the differential equation (1) can be formulated as the ®rst order equation

_w � Bw� h�t�, �6�
with

B �
0 I40

ÿMÿ1Q ÿMÿ1P

24 35, h �
0

Mÿ1F

24 35: �6a�

B is a 80680 matrix and I40 the (40640) identity matrix.
The force/creepage relation of the chosen wheel/rail model without lateral

movement and without spin can be described by the points P1= (0, 0) and
P2= (0�01, mN), P2 with horizontal tangent.
The FORTRAN 77 code UNRUND simulates the dynamics of the

imbalanced±loaded rotating wheelset, running on the railheads with spring and
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Figure 5. Interaction scheme of the short-term dynamics and the long-term behaviour.
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damper as suspension and it uses the subroutine DOBRI5 as a Runge±Kutta
integrator.
The local wear in the surface of the wheel is described by the assumption

a � kvWR �7�
where a is the local material loss by wear (mm), kv is a coef®cient (mm/Watt)
and WR is the friction energy (Watt s). The value of kv is assumed to be
0�00005 kg/Joule, related to the contact area. This means with an estimated
contact area of 1 cm2 a speci®c material loss of 0�06 mm/Joule. The effective
surface wear is due to sinusoidal movement of the wheelset less than estimated
above. But on the other hand it is not possible to simulate many thousands of
wheel revolutions. Therefore the values chosen for kv are much bigger than
physically necessary and the distances which the wheelset travels have to be
extended by the ratio between the physical kv and the chosen value of kv.
The development of the radius R(j) of the wheel surface is

R�j� � R�jÿ 2p� ÿ kvWR�j�: �8�
The friction energy can be calculated by (t2ÿ t1=Dt, where Dt is the integration
step):

WR �
�t2
t1

Pr Dt: �9�

The friction power is

Pr � m�v�v�j�vN�j�, �10�
where m(v) is the friction coef®cient, dependent on creepage, v(j) is the creepage,
dependent on the angle j, v is the speed of the wheelset and N(j) is the normal
force at the contact point, dependent on the angle j.
Figure 6 shows the simulated development of an unround wheel surface under

the load of dynamic imbalance during the ®rst evolutions.
Usually unroundnesses are described by the Fourier coef®cients of the

quasistationary evolvable wheel circumference, which are practically periodic:

R�j� � a0 � a1 cosj� a2 cos 2j� � � � � aq cos qj

� b1 sinj� b2 sin 2j� � � � � bq sin qj:

In UNRUND only the coef®cients of the ``spectral density'' ci are calculated:

ci �
�������������������
�a2i � b2i �

q
:

When using the known procedures (e.g. FFT) it is appropriate to divide the
circumference into 2n sections. In this example 16384=214 sections have been
chosen. This comparatively high number is used because the subroutine
DOBRI5 needs small integration steps for a stable operation, and on the other
hand the creepage calculation of the next revolution of the wheel (j+2p) needs
the actual wheel diameter R(j). Figure 7 demonstrates the development of the
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Figure 6. Development of unroundness of a originally cyclic wheel due to dynamic imbalance
distributed over the wheelset.
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Figure 7. Development of polygonalization of the left wheel, described by spectral density
coef®cients. Fourier coef®cients: Fourier coef®cients: N , 1; & , 2; & , 3; & , 4; & , 5.
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spectral density of polygonalisation during high speed operation of the
unbalanced wheelset.
As a conclusion one has to conceive that the high speed wheelset is a rotor, of

which the bearing matching consists of the wheel treads, running at the rails.
This type of bearing is a trundling roller bearing. The material and the surface of
these ``wheel/rail±bearings'' is not particularly good and wear, as trundling
rolling is sensitive to wear due to creepage and creepage exists in any case
between wheel and rail. If the creepage is invariable within time and phase angle,
polygonalization of the wheel grows together with its unpleasant features.
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